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Abstract. The quark mass function Σ(p) in QCD is revisited, using a gluon propagator in the form
1/(k2 + m2

g) plus 2µ2/(k2 + m2
g)2, where the second (IR) term gives linear confinement for mg = 0 in

the instantaneous limit, µ being another scale. To find Σ(p) we propose a new (differential) form of the
Dyson–Schwinger equation (DSE) for Σ(p), based on an infinitesimal subtractive renormalization via a
differential operator which lowers the degree of divergence in integration on the RHS, by two units. This
warrants Σ(p − k) ≈ Σ(p) in the integrand since its k-dependence is no longer sensitive to the principal
term (p−k)2 in the quark propagator. The simplified DSE (which incorporates the Ward–Takahashi (WT)
identity in the Landau gauge) is satisfied for large p2 by Σ(p) = Σ(0)/(1+βp2), except for Log factors. The
limit p2 = 0 determines Σ0. A third limit, p2 = −m2

0, defines the dynamical mass m0 via Σ(im0) = +m0.
After two checks (fπ = 93 ± 1 MeV and 〈qq̄〉= (280 ± 5 MeV)3), for 1.5 < β < 2 with Σ0 = 300 MeV, the
T -dependent DSE is used in the real time formalism to determine the “critical” index γ = 1/3 analytically,
with the IR term partly serving as the H-field. We find Tc = 180 ± 20 MeV and check the vanishing of fπ

and 〈qq̄〉 at Tc.

PACS. 24.85.+p, 12.38.Lg, 12.38.Aw

1 Introduction

QCD, as the queen of the strong interaction theory, lies
at the root of a whole complex of strong interaction phe-
nomena, ranging from particle physics to cosmology. Its
principal tool is the quark mass function, termed Σ(p) in
the following, being a central ingredient for the evaluation
of a string of QCD parameters whose primary examples
are the pion decay constant and the quark condensate.
The thermal behavior of the latter in turn has acquired
considerable cosmological relevance in recent years in the
context of global experimentation on heavy ion collisions
as a means of accessing the quark–gluon plasma (QGP)
phase [1–4]. It is therefore essential to have at hand a re-
liable Σ(p) function in a non-perturbative form as a first
step towards the evaluation of these basic QCD parame-
ters. In this respect, QCD sum rules (SR), attuned to finite
temperatures [2] have been a leading candidate for such
studies for a long time, using the FESR duality princi-
ple [5], as well as a variational approach via the minimum
of the effective action up to two loops (see Barducci et al. in
the first reference of [1]) to determine the mass function.
An alternative approach has been the method of chiral
perturbation theory [6] with the pion as the basic unit in
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preference to quarks. Now a standard approach to QCD is
via the RG equation for the β function in the lowest order
of g which yields

αs(Q2) = 2π/[9 ln (Q/ΛQ)]

with three flavors, ΛQ being the QCD scale parameter [7].
Unfortunately the higher order terms in g are not par-
ticularly amenable to the simulation of non-perturbative
effects. On the other hand, the Dyson–Schwinger equation
(DSE), which may be regarded as the differential form
of the minimum principle of the effective action [8], of-
fers us a more promising tool which has often been used
with the standard one-gluon exchange (OGE) in the rain-
bow approximation [9] but can be improved to incorpo-
rate gauge invariance so as to satisfy the WT identity in
the “dynamical perturbation theory” (which ignores criss-
cross gluon lines in the skeleton diagrams) with little extra
effort, as first shown by Pagels–Stokar [10]. In this pa-
per, we shall use the same approach, but explicitly add an
extra, non-perturbative, term to the one-gluon-exchange
(OGE) propagator for a quicker simulation of the infrared
(IR) regime, so that both together act as the “kernel” of
the Dyson–Schwinger equation (DSE) [11]. Thus the total
gluon propagator is given by

G(k) =
1

k2 + m2
g

+
2µ2

(k2 + m2
g)2

, (1.1)
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whereµ is a scale parameter corresponding to the (hadronic)
GeV regime (whose value will be left undetermined until
later), and mg is a (small) gluon mass with a non-zero value,
which can be motivated from several angles, a notable one
being the “Schwinger mechanism” [12] as explained in the
Jackiw–Johnson paper [13]. A second motivation was high-
lighted by Cornwall et al. [14], in the context of their ap-
proach to a more compact realization of gauge invariance
via the so-called “pinch mechanism” [14]. Yet a third moti-
vation, which is especially relevant in the present context of
a temperature dependent DSE, comes from according to it
a “Debye mass” status, running with the temperature [15].
A non-perturbative gluon propagator (with harmonic con-
finement) was employed in [16,17] as a kernel of a BSE for
the gg wave function for the calculation of glueball spectra,
on lines similar to qq̄ spectroscopy [18]. Alternative BSE
treatments for glueballs also exist in the literature [19]. In
this paper, the IR part of (1.1) has a dual role:
(1) to serve as a more efficient simulation of the non-
perturbative effects on the mass function Σ(p), and
(2) a partial simulation of the external magnetic field ef-
fect, as an alternative to small non-zero masses of “cur-
rent” quarks [15,20]. With a non-perturbative solution of
the DSE, we are primarily concerned with chiral symme-
try restoration at a critical temperature Tc. To that end
we shall be interested in the T behavior near the critical
point Tc, rather than as an expansion in powers of T 2 near
T = 0 [6]. Note however that linear confinement (∼ r)
corresponds to mg = 0, via the second term in (1.1), in the
(3D) instantaneous limit t = 0, so that deconfinement com-
petes with chiral symmetry restoration with a propagator
like (1.1). We shall not pursue this aspect further, although
we note that deconfinement has been claimed to occur at a
lower temperature [21] than chiral symmetry restoration.

1.1 Object and scope of this paper

The central object of this paper is a determination of the
mass function Σ(p) non-perturbatively in the intermedi-
ate momentum regime with the help of the gluon propa-
gator (1.1) that covers the IR regime. This is sought to be
achieved via a (new) differential formulation of the DSE
based on a subtractive form of renormalization that is par-
ticularly convenient for a DSE type equation. A second
object is to apply the Σ(p) so determined to two basic
quantities, 〈qq̄〉 and fπ, and express them in an analytic
form, so that their T -dependent generalizations may be
achieved analytically too. A third object is to generalize
the DSE to a T -dependent form, so as to obtain an equa-
tion for the T -dependent mass function mt, with a focus
on its critical index γ associated with the critical temper-
ature Tc, so as to gauge the role of the IR term vis-à-vis
small current masses to simulate the H-field effect [15,20].
Further, while in the conventional methods [15,20] the var-
ious thermodynamic quantities are derived from a central
quantity like the free energy [15], or equivalently the ef-
fective potential [20], and taking appropriate derivatives,
the plan adopted here is to focus on the DSE itself as the
principal form of dynamics, with mt as a natural order

parameter. Due to the unconventional nature of this ap-
proach, this part of the exercise is still preliminary, with
only one critical index identifiable with mt determined so
far, while the other indices [20] are left for later studies,
within the DSE framework.

In Sect. 2, we formulate the DSE for Σ(p) in an (in-
finitesimal) form of (subtractive) renormalization which
yields a non-linear second-order differential equation for
this quantity. The dynamical mass m0 is defined as the
pole of SF(p) at iγ.p = −m0 and hence corresponds to the
solution of the equation for Σ(im0) = m0. Although in
principle a mass renormalization factor Zm comes accord-
ing to the rules of [7], the condition Σ(im0) = m0 ensures
that this factor is effectively unity, provided the dynamical
mass is employed for the propagator at its pole. As for
the quantity Σ(0), we shall designate it as the constituent
mass. For the solution of the resulting DSE, three crucial
check-points are p2 = ∞; p2 = 0; p2 = −m2

0 which control
the structure of Σ(p). The simplest ansatz consistent with
a p−2-like behavior in the p2 = ∞ limit, as demanded by
QCD, is Σ0/(1+βp2) [1], the only precaution needed for a
consistent solution being a constant αs with its argument
fixed in advance at a certain specified value. This form has
good analytical properties for large space-like momenta,
but it implies that the dynamical mass Σ(im0) exceeds
the constituent mass Σ(0).

For a basic test of this structure, we choose in Sect. 3
two key items:
(i) qq̄ and
(ii) f2

π , whose derivations are sketched in Appendices A
and B respectively in an analytical form. The results agree
with experiment to within ∼ 5%, for Σ0 = 300 MeV, mg ≈
ΛQ = 150 MeV, and the hadronic scale parameter β in the
range 1.5 < β < 2.0.

Section 4 outlines the formulation of the temperature
dependent DSE (T-DSE for short) within the real time
formalism [22], instead of the imaginary time formalism
à la Matsubara [23]. The order parameter in this regard
may be chosen in one or more ways, a convenient choice
being Σ0 which now “runs” with the temperature and is re-
named mt. Other analogous quantities which are expected
to “run” with the temperature are the gluon mass renamed
as mgt, and perhaps also the IR parameter µ whose con-
nection with mt and mgt is brought out in Sect. 4. It is
found that the constituent and gluon masses have the same
“critical index” γ = 1/3 (in accordance with the concept
of “universality” of the critical indices), while the critical
temperature works out as Tc ≈ 180 ± 20 MeV. Section 5
concludes with a discussion including a comparison with
contemporary approaches.

2 Dyson–Schwinger equation
in differential form

We start by writing the DSE in the Landau gauge which
ensures that the A parameter does not suffer renormaliza-
tion [24]. This is an additional precaution over and above
the Pagels–Stokar DPT approach [10] to satisfy the WT
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identity. The starting DSE in the Landau gauge for the
function Σ(p), after tracing out the Dirac matrices takes
the form

Σ(p) = ig2
s
F1.F2

(2π)4

∫
d4k

1
[Σ2(p − k) + (p − k)2]

(2.1)

×
[
Σ(p − k)δµν + (Σ(p) − Σ(p − k))

(p − k)µ(2p − k)ν

k2 − 2p.k

]

×(δµν − kµkν/k2)
[

1
k2 + m2

g

+
2µ2

(k2 + m2
g)2

]
.

The first term on the RHS corresponds to the rainbow
approximation [9], while the second term gives the simplest
realization of a gauge invariant structure by satisfying the
WT identity à la Pagels–Stokar [10]. An analogous but
slightly more involved ansatz due to Ball–Chiu [25] also
can be seen to conform to the Landau form [10], through
a visual inspection of both. To see this more explicitly, we
list both forms for the relevant vertex functions, first [25]
(as given in [24]) followed by [10]

Γν(p′, p) = −iγν [A + A′]/2

+
A′ − A

2(p2 − p′2)
[−iγ.(p + p′)(pν + p′

ν)]

+
B − B′

p2 − p′2 (pν + p′
ν) , (2.2)

Γν(p′, p) = −iγν +
Σ(p) − Σ(p′)

p2 − p′2 (pν + p′
ν),

where the momentum dependence (p, p′) of the Ball–Chiu
functions A, B is indicated by the unprimed and primed
notation respectively and the mass function Σ(p) = B/A,
while the Landau gauge corresponds to A = 1. The Ball–
Chiu form [25] is seen to be compatible with Pagels–Stokar
[10] (which is already in the Landau gauge, A = 1). So,
without further ado, we shall use only [10] for simplicity.

We now adopt a subtractive form of renormalization
by writing a similar equation for, say, p′, and subtracting
one from the other. If p′ is infinitely close to p, this results
in a differential form. Thus we subject both sides of (2.1)
to the differential operator p.∂, not the scalar form p2∂p2 ,
since the former is more naturally attuned to handling two
vectors p, k that occur on the RHS. The main advantage of
this crucial step is to reduce the degree of divergence of the
integral with respect to k by two units, which in turn allows
for further simplifications on Σ(p − k) on the RHS, since
it falls off rapidly with k2. In particular, we are allowed to
make the following simplification as a result of this crucial
step of reducing the divergence via differentiation:

Σ(p) − Σ(p − k)
k2 − 2p.k

≈ −∂p2Σ(p) .

A second simplification arises from a contraction of the
factors (p − k)µ(2p − k)ν and (δmuν − kµkν/k2) which is
almost independent of kµ and gives on angular integra-
tion [26]

2[p2 − (p.k)2/k2] ≈ 2(1 − n−1)p2; n = 4 .

Further, against the background of the differential op-
erator p.∂p on both sides of (2.1), we can replace the mass
function Σ2(p − k) inside the fermion propagator on the
RHS due to an improved k-convergence, by simply replac-
ing Σ2(p − k) with Σ2(p), since this quantity already falls
off with momentum (see also [10]). The resulting equa-
tion (2.1) now takes the form

2Σ′(p) =
4g2

s

i(2π)4

∫
d4k

[
2Σ′(p) − Σ′′(p)

D(p − k)

− Σ(p) − Σ′(p)/2
D2(p − k)

(4Σ(p)Σ′(p) + 2p2 − 2p.k)
]

×
[

1
k2 + m2

g

+
2µ2

(k2 + m2
g)2

]
, (2.3)

where we have taken F1.F2 = −4/3, and we defined deriva-
tives and propagators as

Σ′(p) = (1/2)p.∂pΣ(p) = p2∂p2Σ(p) ;

D(p − k) = Σ2(p) + (p − k)2 . (2.4)

Note that decoupling of Σ(p) from kµ now facilitates the
k-integration, thus converting the DSE into a differential
equation, while the form of Σ(p) is as yet undetermined.
(This structure is different from a more conventional one
for a differential form of the DSE, by making the D(p−k)
separable in terms of p> and p<, etc. [7, 14].)

The next task is to integrate with respect to d4k, which
for the OGE term is still logarithmically divergent and
hence requires “dimensional regularization ” (DR) à la
‘t Hooft–Veltman [27], while the IR term gives a convergent
integral. We hasten to add that this divergence (despite
the Landau gauge) may well be an artefact of the approxi-
mation Σ(p−k) ≈ Σ(p) in the numerator on the RHS, but
since the divergence is only logarithmic, it is not sensitive
to DR [27], and in any case it is a small price to pay for
the huge advantage accruing from this (new) differentia-
tion method for renormalization. Another approximation
concerns the factor g2

s on the RHS of (2.1) and (2.2) which,
strictly speaking, is a function of the momenta p, k, but
at this stage we must “freeze” the value of αs at a fixed
value (to be specified below) so as to get a self-consistent
asymptotic solution in the p2 = ∞ limit. [More general
solutions with the differential form (2.2) and variable αs
have not been attempted here.]

2.1 Dimensional regularization for integrals

Denote the two integrals of (2.2) containing the OGE term
only by I and II respectively, of which only I is divergent
(see above), but II is convergent by itself. Thus write for
I in the Euclidean notation for dimension n, using the DR
method [11,27],

I = 4g2
s (2Σ′(p) − Σ′′(p))ζε (2.5)

×
∫

dnk

(2π)nD(p − k)(k2 + m2
g)
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= 4g2
s (2Σ′(p) − Σ′′(p))ζε

×
∫ 1

0
du

∫ ∞

0
dk2kn−2 πn/2

Γ (n/2)(2π)n(Λu + k2)2
,

where we have introduced the Feynman variable 0 ≤ u ≤ 1,
ζ is a UV dimensional constant, ε = 4 − n, and

Λu = uΣ2(p) + p2u(1 − u) + m2
g(1 − u) .

The integration over k2 is now straightforward, while
that over u is simplified by dropping the m2

g term since there
is no infrared divergence. The result of all these steps after
subtracting the UV divergence [27] is (with g2

s = 4παs):

I = (αs/π)(2Σ′(p) − Σ′′(p))[ln 4π − γ + 1 + ln(ζ2/Ap)] ,
(2.6)

where
Ap ≡ Σ2(p) + p2/2 . (2.7)

The other integral, II, which is UV convergent does not
need DR [27] and gives

II = −(αs/π)(Σ(p)−Σ′(p)/2)
(4Σ(p)Σ′(p) + p2)

Ap
. (2.8)

Thus the resulting DSE may be expressed compactly
from (2.3) as

2Σ′(p) = I + II + I ′ + II ′ , (2.9)

where we have taken I and II from the OGE contribu-
tions (2.7) and (2.8) respectively as well as added two
similar (infrared) terms I ′ and II ′ arising from the sec-
ond (IR) part of the gluon propagator (1.1). In the same
normalization as above the last two work out as

I ′ =
2µ2αs

πAp
(2Σ′(p) − Σ′′(p))[ln(Ap/m2

g) − 1] ,

II ′ = − 2µ2αs

πA2
p

(Σ(p) − Σ′(p)/2)(4Σ(p)Σ′(p) + p2)

×[ln(Ap/m2
g) − 2] , (2.10)

where we have made use of the smallness of mg which is
simplifying for some of the integrals over u. Note that the
last two terms are at least of two lower orders in p than
their OGE counterparts, so that they will not contribute
to the p2 = ∞ limit of the differential equation (2.9).

2.2 Large and small p2 limits of DSE for T = 0

To solve (2.9), we try the ansatz [1, 20]

Σ(p) = Σ0/[1 + βp2] , (2.11)

whose asymptotic form is compatible with perturbative
QCD expectations for massless quarks in the chiral
limit [10]. And we take the fixed value of p2 in the argument
ofαs at p2 = ζ2, where ζ is theUVparameter corresponding
to the upper limit of p2 allowed in the solution of the DSE.
[Other options exist but are not particularly convenient.]

2.2.1 Large p2 limit

Remembering the definition (2.4) for Σ′, etc., we have in
the large p2 limit for the function (2.11)

Σ(p) ≈ −Σ′(p) ≈ +Σ′′(p) .

Now remembering the upper limit of p2 being con-
strained by the UV parameter ζ2, substitution from (2.9)
yields the result

−2 = αs/π[−3(ln(4π) − γ + 1 + ln 2) − 3] ;

π/αs =
9
2

ln(ζ/ΛQ) , (2.12)

ΛQ = 150 MeV being the usual QCD scale parameter.
Thus (2.12) determines the value of the maximum momen-
tum ζ within this approach, and shows that our formalism
does not permit p2 to exceed ζ2. Unfortunately (2.12),
which corresponds to the check-point p2 = ∞, restricts ζ
to a rather low value:

ζ/ΛQ = 1.5490 ; ζ = 0.706 GeV only , (2.13)

where the MS scheme (not M̄S [28]) has been employed.

2.2.2 Small p2 limit

Next we consider the small p2 limit of (2.9) where for
the (fixed) argument of αs we continue (for mathematical
consistency) tomaintain the samevalue ofαs corresponding
to p2 = ζ2, leading after straightforward simplifications to

C0 + lnx1/x0 − 3 + 1/x0 + [I ′ + II ′] = 9 ln(ζ/ΛQ) ;

C0 ≡ ln 4π − γ = 1.9538 , (2.14)

where the dimensionless quantities are defined as

x1 ≡ ζ2β ; x0 ≡ Σ2
0β . (2.15)

Note that (2.14) has a big term on the RHS, viz., 9×1.5490,
needing a corresponding augmenting of the LHS, which
can come only from the IR terms from (2.9), symbolically
denoted by [I ′ + II ′] in (2.14), that include the (as yet
free) parameter λ = 2βµ2. [Of course these IR terms do
not contribute to (2.12).]

2.3 Dynamical mass and mass renormalization

The third point, p2 = −m2
0, which defines the dynamical

mass, corresponds to the “pole” of the propagator SF(p),
so that

Σ2(im0) = +m2
0 > Σ2(0) . (2.16)

It may be recalled that a distinction between the dynamical
and constituent masses already exists in the literature.
Thus in the notation of Domb [29] (pp. 322–324), p and p0
correspond to m0 and Σ0 respectively.
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Substituting from (2.11) gives a cubic equation in m2
0:

Σ2
0 = m2

0(1 − βm2
0)

2 , (2.17)

which implies that Σ0 < m0. Using the dimensionless vari-
ables x0 = βΣ2

0 and y0 = βm2
0, this reduces to the cubic

y0(1 − y0)2 = x0 which has at least one real solution for
y0 in terms of x0:

βm2
0 ≡ y0 (2.18)

= 2/3 +
∑
±

[
x0/2 − 1/27 ±

√
x2

0/4 − x0/27
]1/3

,

whose nature can be seen as follows. For small x0, y0 is
also small (seen directly from the cubic form), but as x0
increases, y0 increases more rapidly, until x0 reaches a
critical value xc = 4/27 (as seen from (2.18)). Beyond this
point y0 increases more slowly with x0. The corresponding
critical value of β is

βc = 4/(27Σ2
0) ≈ 1.646 GeV−2, for Σ0 = 300 MeV .

(2.19)
We shall keep Σ0 fixed at 300 MeV but vary β in the typical
hadronic range 1.0 < β < 2.0 for applications to key QCD
parameters like 〈qq̄〉 and f2

π . Now the propagator may be
written as

SFR(p) = Zm
Σ(p) − iγ.p

Σ2(p) + p2 , (2.20)

making use of (2.17), and formally introducing a “mass
renormalization” factor Zm to be determined. However, us-
ing the condition (2.16) in the numerator and denominator
of (2.19) shows immediately that near the pole the RHS
already has the correct structure, (m0 − iγ.p)/[m2

0 + p2],
which suggests that Zm = 1! On the other hand an al-
ternative way to extract the factor (p2 + m2

0) from (2.19)
suggests a non-zero value of Zm. This is seen from rewriting
the RHS of (2.20) as

Zm(Σ(p) − iγ.p)/[Σ2(p) − Σ2(im) + m2
0 + p2]

and taking the limit p2 → −m2
0 after extracting the factor

(m2
0 +p2) from the denominator. Zm is now determined by

the condition that at the pole this quantity reduces exactly
to 1/(m0 + iγ.p). This gives

Zm = (1 − 3m2
0β)/(1 − m2

0β) . (2.21)

In view of this ambiguity in the working definition of Zm,
it is not clear if this (finite) Zm is significant beyond unity.
However within this subtractive renormalization approach
to the DSE, the divergences are already toned down to the
logarithmic level, so that renormalization is probably less
significant than for the usual (unsubtracted) DSE form.
For the rest therefore we shall set Zm = 1 in what follows.

2.4 Solution of (2.9), including IR terms

Taking account of the IR terms in (2.9) , the full equa-
tion (2.14) reads

0 = Ax2
0 − x0(Bλ + 1) + Cλ , (2.22)

A = − ln 4π + γ + 3 − 2 ln(ζ/Σ0) + 9 ln(ζ/ΛQ),

B = 7 − 6 ln(Σ0/mg) ; C = 2 − 2 ln(Σ0/mg) ,

where x0 = βΣ2
0 , and λ = 2µ2β. A practical way is to

solve (2.22) for λ with Σ0 = 300 MeV and mg = 150 MeV.
This gives λ for typical values of the “range parameter”
β. Note that the connection between x0 and y0 is already
determined by (2.17) and (2.18). Now with Σ = 300 MeV,
the typical value β = 1 GeV−2 (x0 = 0.09 and y0 = 0.115)
yields λ = −0.0640. The latter is an index of the strength
of a (small) IR term needed to provide a self-consistent
solution of the DSE in the low momentum regime to match
its solution for ‘large” momenta. We shall come back to
these quantities in Sect. 4 for the T -dependent DSE.

At this stage it may be asked what happened to the
third check-point p2 = −m2

0 for the DSE, analogously to
the points p2 = ∞ and p2 = 0 considered in the forego-
ing. As a matter of fact, this condition has already been
subsumed in the determination of the relation between
the constituent and dynamical masses in (2.17) and (2.18)
within the specific structure (2.11), so no new results can
be expected from the DSE for p2 = −m2

0. The check-point
p2 = −m2

0 will however come into play again in Sect. 4,
but in a T -dependent form of the DSE. But before im-
plementing the T -dependent DSE programme, it is first
necessary to carry out two vital tests of this T = 0 for-
malism, viz., its performance on the two crucial quantities
〈qq̄〉 and f2

π [1, 5, 6], which we consider next.

3 Tests of mass function: 〈qq̄〉 and f2
π

The quark condensate and the pion decay constant are
regarded as fairly sensitive tests of the mass function Σ(p)
determined as a solution of the DSE, expressed in the
differential form (2.9). To that end we first collect their
formal definitions as follows. The condensate after tracing
out the Dirac matrices is

〈qq̄〉0 =
4Nc

(2π)4

∫
d4p

Σ(p)
Σ2(p) + p2 , (3.1)

which simplifies on making use of (2.19) and (2.20) to

〈qq̄〉0 (3.2)

=
4Nc

(2π)4

∫
d4p

Σ0(1 + x)
(p2 + m2

0)[(1 + x)2 − 2y0(1 − y0)]
,

where
x = p2β ; y0 = m2

0β ; x0 = Σ2
0β . (3.3)

The corresponding quantity f2
π may be defined in the chiral

limit by

2f2
πPµ =

Nc

(2π)4

∫
d4pTr[(Σ(p1) + Σ(p2))

×γ5SFR(p1)iγµγ5SFR(−p2)] ,

where SFR is given by (2.19) and (2.20), P = p1 + p2,
and the pion–quark vertex function has been taken as [10]
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[Σ(p1)+Σ(p2)]/2fπ. Fortunately the complete expression
may be taken over from [10] (also given in [1]), viz.,

f2
π =

4Nc

(2π)4

∫
d4pE

[1 − (p2/4)∂p2 ]Σ2(p)
(Σ2(p) + p2)2

(3.4)

in the Euclidean limit. The derivations of (3.2) and (3.4) are
shown in Appendices A and B respectively. The final result
for the condensate is summarized in (A.4–A.6) where the
standard table of integrals [30] has often been employed.
Similarly, for the pion decay constant, the final result is
given by (B.5).

3.1 Results for condensate and pion decay

The key parameters of this theory are Σ0, the constituent
mass, and β, the parameter for the non-perturbative
hadronic scale. A third quantity, the dynamical mass m0,
is determined by these via (2.17), which can be expressed
in terms of the dimensionless parameters x0 and y0. Since
the object of this investigation is not to provide a detailed
phenomenological fit to these quantities, but rather to see
if this new differential form of the DSE is consistent with
the conventional range of values of the constituent mass,
we shall refrain from any fine-tuning and offer some typ-
ical values within this alternative DSE framework, which
is constrained by the fairly rigid connection between Σ0
and m0 brought about by the cubic equation (2.17). Thus,
with a fixed Σ0 at 300 MeV, Table 1 depicts some typical
values of β, x0 and y0.

For these three sets we get under the MS scheme [28]

〈qq̄〉0 = (0.1545; 0.0932; 0.114)Σ0/β , (3.5)

where we have depicted the sensitivity of this quantity to
the main parameters β for Σ0 fixed at 300 MeV. For the
values listed in Table 1, the numbers work out as

(359 MeV)3; (279 MeV)3; (284 MeV)3

respectively, suggesting that β should lie fairly close to
its “critical” value βc = 1.646, without further tuning.
Similarly, the pionic constant works out for the three values
of x0 given above, as

f2
π = (92.0 MeV)2; (93.1 MeV)2; (94.3 MeV)2 , (3.6)

respectively, with Σ0 = 300 MeV. This quantity is not sen-
sitive to β but varies as the square of Σ0. These values give
a rough test of this formalism without vastly extending
the numerical framework. Note that the IR parameter λ at
−0.064 has been rather passive in these determinations, but

Table 1. Variations of x0, y0 with β

β x0 y0

1.00 0.090 0.115
1.646 4/27 4/3
2.00 0.135 1.365

its temperature dependence is going to play a more active
role in the T -dependent DSE, for the self-consistent deter-
mination of the critical temperature Tc to be considered
in Sect. 4 to follow.

4 T-DSE in real time formalism

As noted in Sect. 1.1, since our DSE formulation departs
from the more conventional thermodynamic formulations
[15, 20] based on the free energy [15] or effective poten-
tial [20], we are not yet in a position to offer a complete
set of critical indices near Tc, except the one for the T -
dependence of the order parameter mt. Keeping this in
mind, to formulate the T -dependent DSE, we have two
broad options: the real [22] versus imaginary [23] time for-
malisms. The T = 0 structure of the DSE suggests that it
is natural and convenient to employ the real time formal-
ism and follow the prescription of Dolen–Jackiw [22] for
adding to the quark and gluon propagators (which can be
easily read off from the main DSE, (2.9)), the T -dependent
imaginary parts of the Bose/Fermi types, leading to the
modified propagators respectively as follows:

DFT (k) =
−i

k2 + m2
g

+
2π

exp ω/T − 1
δ(k2 + m2

g) ;

ω ≡
√

m2
g + k2 , (4.1)

SFT (p) =
−i

Σ(p) + iγ.p
− 2π(Σ(p) − iγ.p)

exp Ep/T + 1
δ
(
Σ2(p) + p2) ,

(4.2)

where the quark energy Ep is the fermionic analog of the
gluon energy ω, (4.1). Taking the gluon case first, there are
now two kinds of operations on (2.9). Namely, since the
p2 values are being considered to be on the mass shell, we
shall now write p2 = −m2

t (instead of −m2
0) to emphasize

the T -dependence of this quantity. Similarly (see Sect. 1)
we shall consider the gluon mass mg and the constituent
mass Σ0 to “run” with T , and designate them as Σt and
mgt respectively. Considering the bosonic and fermionic
Boltzmann factors (4.1) and (4.2) in this order, we shall
have extra contributions to the four pieces on the RHS
of (2.9), but giving rise to 3D integrals only. We now collect
these values separately, first upgrading the T = 0 results
of Sect. 2 to T 	= 0.

4.1 T-dependent I; II and I′; II′

To simplify the four pieces of the DSE, (2.9), on the T -
dependent mass shell, the following results are useful:

Σ(p) = mt; 2Σ′(p) − Σ′′(p) = +
βm4

t

Σt
; (4.3)

Σ(p) − Σ′(p)/2 = mt − βm4
t

2Σt
. (4.4)
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Collecting these results on the (now T -dependent) four
pieces on the RHS of (2.9) we have

I + I ′ =
+βm4

t

Σt

×
[
2.9538 + ln (2ζ2/m2

t ) +
2λt

m2
t β

[ln (m2
t /2m2

gt) − 1]
]

,

II + II ′ = mt − βm4
t

2Σt

(
2 − 8βm3

t

Σt

)
(4.5)

×
[
1 +

2λt

m2
t β

[ln (m2
t /2m2

gt) − 2]
]

.

To these pieces must be added the T -parts of the gluon
propagators (bosonic) accruing from (4.1), and the T parts
of the quark propagators (fermionic) from (4.2). These
are basically 3D integrals because of the δ-functions. To
evaluate them the following quantities come into play:

D(p − k) = Σ2(p) + (p − k)2 = −m2
gt + 2mtω , (4.6)

4Σ(p)Σ′(p) + 2p2 − 2p.k = +
4βm5

t

Σt
− 2m2

t + 2mtω .

(4.7)

Here we have taken the rest frame of pµ, viz., p = 0. The
bosonic T -parts normalized to the pieces in (4.5) are

BOSET = 4
∫

dω
√

ω2 − m2
gt

1
exp ω/T − 1

[IBT + IIBT ]

(4.8)
where the lower limit of ω-integration is mgt, and the two
integrands are

IBT = − βm4
t /Σt

2ωmt − m2
gt

; (4.9)

IIBT =
mt − βm4

t

2Σt

(2ωmt − m2
gt)2

[2m2
t − 2mtω − 4m5

t β/Σt] .

(4.10)

Similarly for the fermionic parts, denoted by I(FT ) and
II(FT ), respectively. The complete T -dependent DSE is
then obtained by modifying (2.9) à la (4.5) and adding the
pieces (4.9) and (4.10), and the corresponding fermionic
parts, after integrations. Before carrying out these integra-
tions we notice some general features of these quantities in
the neighborhood of the critical temperature Tc. Namely,
(i) the powers of mt are spaced by three units;
(ii) mt and mgt are always involved in identical ratios.

One may infer from this that the critical index γ for
both is the same at 3γ = 1, consistent with universality [29]
for such quantities. Thus, in the neighborhood of Tc one
may take

[mt; mgt] ≈ [Σ0; mg]τγ ; τ = 1 − T/Tc ; γ = 1/3 .
(4.11)

The T -dependence of m0 may be handled via (2.17). Note
that in the neighborhood of Tc, Σt ≈ mt, a result which is

consistent with (7.278) of [29]. Retaining only the lowest
powers of the small quantities mt, mgt, most of the terms
in the T-DSE will drop out, and the integrals over (4.9)
and (4.10) will lead to the net bosonic contribution

BOSET /(4T ) =
mt

2mgt(1 − m2
gt/2m2

t )
− [ln(2T/mgt)]/2 .

(4.12)
To this T -dependent (gluon propagator) contribution must
be added the corresponding quark propagator contribu-
tion, (4.2), near T = Tc, by following a procedure similar
to the above one. For brevity, we indicate only the ex-
tra features, before writing the final result. The fermionic
T -part of the quark propagator in (4.2) now becomes

(−2iπ)
δ((p − k)2 + m2

t )
(exp(E(p − k/T ) + 1))

. (4.13)

And analogous to (4.6),

k2 + m2
g ≈ 2mtEk − 2m2

t + m2
gt ; Ek =

√
(k2 + m2

t ) .

(4.14)
Next, taking account of (4.3) and (4.4), and proceeding as
in the gluon case, we can evaluate the quark counterpart
of (4.8) in the neighborhood of T = Tc in the form

FERMIT ≈
[
−Tβm2

t tan−1
[

T

T + mt

]

+ λt(−γ + ln(T/mt))/4
] / (

4π2) .

(4.15)

It is easily checked that this quark contribution is at least of
O(

√
βmt) comparedwith the gluonone, so that it is justified

to neglect it, at least near the critical point. The master
equation T-DSE, keeping only the lowest order terms, now
simplifies to

4λt

βmt
L1 + BOSET = 0 ; L1 = ln

(
m2

0/2m2
g

) − 2 . (4.16)

This equation suggests a simple structure for λt, perhaps
one of the few that are consistent with its solution, viz.,

λt = λ0(mgt/mg)γ [− ln τγ + 1] ; τ = 1 − T/Tc , (4.17)

where λ0 may be identified with the value found in Sect. 3,
viz.,λ = −0.064±0.003, and the termunity in square brack-
ets signifies its normalization at T = 0. Equation (4.16)
after substitution from (4.12) now reduces to two equations,
involving the coefficients of

τγ ; τγ ln τγ ,

respectively, but we skip these equations for brevity. The
result, after elimination of the quantity L1 of (4.16) from
them, and dividing out by T , is

−1/2+(1/2ν)[1−ν2/2] = 1/2 ln[2Tc/mg] ; ν = mg/Σ0 ,
(4.18)
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using (4.11) near the critical point. Substituting from
Sect. 2.3, viz., ν ≈ 1/2 gives the surprisingly simple re-
sult

ν ≈ 1/2 ; 2Tc ≈ mg exp 7/8 , (4.19)

leading to a reasonable value for the critical tempera-
ture, viz.,

Tc ≈ 180 ± 20 MeV (mg = 150 MeV) . (4.20)

4.2 Condensate and pionic constant near T = Tc

For completeness we offer some brief comments on the
predictions of this simple formalism on the corresponding
T -dependent quantities 〈qq̄〉 and f2

π near the critical point
T = Tc, analogously to the results of [1,5]. This is possible
in view of the analytical expressions for these quantities
as given in Appendices A and B in terms of y0, a and x0
respectively. In T -dependent form, y0 ∼ m2

t , a ∼ mt, and
Σ0 ∼ mt, which in turn are expressible in terms of the basic
“order” parameters mt and mgt; see (4.11). Substitution
in (A.6) and (B.5) shows that 〈qq̄〉 and f2

π tend to zero near
the critical point like mt and m2

t ln 1/m2
t respectively, in

general accord with standard expectations.
For comparison with other approaches, the chiral per-

turbation theory [6] for f
(
πT ) predicts [5]

fπ(T ) = f̃π

[
1 − Nf

2f̃2
π(2π)3

∫
d3p[exp (E/T ) − 1]−1/E

]
,

which however does not indicate how this quantity behaves
near Tc. Another form [1] which is more in line with our
parametrization of Σ(p), suggests that Σt should vary as
〈qq̄〉T , in agreement with our result for the condensate.

5 Summary and conclusion

In retrospect, we have proposed a new (differential) form of
the Dyson–Schwinger equation (DSE) for the mass func-
tion Σ(p), based on an (infinitesimal) subtractive form
of renormalization in QCD. Such a “subtraction” in turn
amounts to employing a differential operator of the form
pµ∂µ applied on both sides of the DSE, whose effect on
the RHS is to lower the degree of divergence with re-
spect to the integration variable kµ by two units. It is in
the background of this (differential form of) subtractive
renormalization that it becomes possible to approximate
the quantity Σ(p − k) inside the integral by Σ(p), since
the k-dependence of this already decreasing quantity is no
longer sensitive to the principal term (p−k)2 in the quark
propagator. [Without this background of an improved k-
convergence, however, this approximation would not have
been justified.] This crucial step, which has facilitated the
integration over d4k without further ado, has thus helped to
convert the DSE into a second-order differential equation,
the extra order (beyond the rainbow approximation [9])
arising from the term responsible for satisfying the WT
identity à la Pagels–Stokar [10], so as to preserve gauge

invariance. To reinforce this effect, we have employed the
Landau gauge which makes the DSE virtually dependent
only on the mass function Σ(p) by effectively eliminating
the A-function [27]. (The “ghost terms” do not appear in
this effective description.)

To solve the resulting differential form of the DSE, we
have taken recourse to three crucial check-points: p2 = ∞,
p2 = 0, and p2 = −m2

0, using a pole ansatz, (2.16) [1], which
is consistent with the form p−2 in the large p2 regime, in
agreement with dynamical breaking of chiral symmetry for
massless quarks [10], provided the argument of αs is held
fixed at some chosen value (here the UV parameter ζ). This
has given a rather small value for the UV parameter ζ that
appears as an argument of αs, which effectively restricts
the range of applicability of this formalism to moderate
values of p2 (perhaps adequate for the temperature range
of interest for this paper). For the low p2 regime, we have
introduced two kinds of masses: the constituent mass Σ(0)
which is generally believed to be of ∼ 300 MeV, and the dy-
namical mass m0 which satisfies the equation Σ(im0) = m0
corresponding to the pole position of the quark propagator
p2 = −m2

0 (see also [29]). Now for the simple form (2.16)
the connection between the two “masses” is given by (2.18)
(as the solution of a cubic equation) which corresponds to
Σ(0) < m0. The parameter β in (2.16), for a given Σ(0),
has been taken as a typical hadronic scale befitting the
low energy regime of the DSE. The small IR parameter
2µ2 (≡ λ/β), which has played a passive role in the T = 0
description of the DSE, turns out to be rather crucial for
T > 0, for which the ansatz (4.17) is necessary for a self-
consistent solution of the T-DSE (see further below). We
have also considered a non-zero value of the gluon mass
for which several arguments have been advanced in the
literature [13–15].

We have also carried out two important applications
of Σ(p) obtained from this new formulation of the DSE,
viz., the quark condensate and the pion decay constant,
more by way of some basic calibration of the formalism
than as a means of detailed phenomenological fits to the
hadronic data. Thus a fit to within < 10% has helped fix the
parameters involved. After this check, we have attempted
in Sect. 4 a T -dependent formulation of the DSE to see the
extent to which it can simulate the critical temperature
and at least one of the critical indices. To that end, we
have taken the p2 = −m2

t limit of the T-DSE near the
critical point Tc, where it is small. In this respect, the
demands of consistency have necessitated a T -dependence
of the IR confining parameter λ, for which an ansatz of the
form (4.17), calibrated to its value at T = 0, is indicated.
Two clear results have emerged from the analysis, viz.,
(i) a bunching of the powers of mt in units of three suggest
a critical index γ = 1/3 according to the conventional
analysis [29],
(ii) and the “matching” of the coefficients of like powers
of the reduced temperature τ have led to a very simple
solution of the form (4.18), leading to the reasonable Tc at
180 ± 20 MeV.

For a comparison of this result with those of contem-
porary approaches [15,20], our approach differs from these
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in two important respects.
(i) Instead of starting from the free energy [15] or the effec-
tive potential [1] for appropriate differentiations to access
the relevant thermodynamic quantities, we have used the
T-DSE itself as the dynamical language to that end.
(ii) The role of an external H-field is sought to be partially
simulated by the IR parameter λ which is necessarily T -
dependent, instead of an approach by small but non-zero
u–d masses [15, 20]. Further, in view of our explicit ana-
lytical expressions for 〈qq̄〉 and f2

π , we have also obtained
analytic structures for their T -dependence, and we found
indeed that they both vanish at the critical point, without
a detailed numerical analysis [6, 15, 20]. However this ap-
proach has its weak points, especially the ad hoc nature
of (4.17) for the T -dependence of the IR term. A second
one is the lack of a more plausible understanding of the
extent to which the IR term can substitute for the current
masses [15,20] to simulate the H-field effect. Attempts at
throwing more light on these issues, as well as extending
the T-DSE formalism to facilitate the evaluation of other
critical indices [20,29], are envisaged. Furthermore, in view
of its central role, several other applications of the “mass
function”, such as π → 2γ, and the e.m. pion form factor
at finite temperature [31], are under way.
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Appendix A: evaluation of 〈qq̄〉0

Using the notationx = βp2 and y0 = βm2
0, and anticipating

a UV divergence, which requires a DR treatment [27], we
write 4 → n in (3.2), which reduces after the angular
integration [11,27] to

〈qq̄〉0 =
4Ncπn/2Σ0ζ

ε

(2π)nΓ (n/2)βn/2−1

∫ ∞

0
dxxn/2−1F (x) , (A.1)

where

F (x) =
(1 + x)

(x + y0)[(1 + x)2 − a2]
; a2 = 2y0(1 − y0) .

(A.2)
Now break up F (x) into partial fractions

F (x) =
1

[(1 − y0)2 − a2]

×
[

1 − y0

x + y0
− 1 − y0 + a

2(1 + x − a)
− 1 − y0 − a

2(1 + x + a)

]
.

The integration of each term above is carried out ac-
cording to

∫ ∞

0
xn/2−1dx/(A + x) = A1−ε/2Γ (n/2)Γ (1 − n/2) .

(A.3)

The rest is a matter of collecting all three terms after giving
a DR [27] treatment to each. The final result is

〈qq̄〉0 =
Σ0Nc

β4π2

×[g(a)(ln 4π − γ + 1 + ln ζ2β) + h(a)] ;

g(a) =
1 − y0 − a2/2
(1 − y0)2 − a2 ; (A.4)

h(a) =
y0(1 − y0) ln y0

(1 − y0)2 − a2

−(1/2)
∑
±

(1 ± a) ln(1 ± a)
1 − y0 ± a

.

This result is valid for small y0 (i.e., β ∼ 1), when a2 > 0.
However for larger β, vide (2.18) and (2.19), y0 exceeds
unity, and a2 < 0. For such cases, put a2 = −b2. In par-
ticular the partial fraction break-up for βc, corresponding
to y0 = 4/3, is rather simple:

F (x) =
b2 + (1 + x)/3
(1 + x)2 + b2 − 1/3

x + y0
,

since b2+(y0−1)2 becomes unity. Now using the result [30]

∫ ∞

0

xn/2−1dx

1 + b2 + 2x + x2 = − (1 + b2)n/4−1 sin (n/2 − 1)t
sin t sin nπ/2

,

(A.5)
where

cos t = +1/
√

1 + b2 ; sin t = +b/
√

1 + b2 ,

and giving a DR treatment [27] as above, the result corre-
sponding to (A.5) is

〈qq̄〉0 =
Σ0Nc

β4π2 [b2(ln 4π − γ + 1 + ln ζ2β) + f(b)] ;

f(b) = (1/6 − b2/2) ln(1 + b2) − ln y0/3

−(4b/3) tan−1 b . (A.6)

For purposes of obtaining the temperaure dependence
of the quark condensate (to be discussed in Sect. 4), we
record the results of these integrations in the limit of small
a and y0, for which (A.4) is appropriate:

g(a) ≈ 1 + O(y0) ; h(a) ≈ y0 ln y0 + a2 ∼ a ln a . (A.7)

Substitution in (A.1) gives in this limit

〈qq̄〉0 =
Σ0Nc

β4π2 [(ln 4π−γ +1+ln ζ2β)+O(a ln a)] , (A.8)

which lends itself immediately to a finite T treatment in
the neighborhood of the critical point (see Sect. 4).
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Appendix B: evaluation of f2
π

Since the integral (3.4) is convergent by itself, DR [27] is not
needed in this case. After the angular integrations (using
the dimensionless units x, y0 as before) and carrying out
the differentiations, (3.4) reduces to

f2
π =

Σ2
0Nc

4π2 I (B.1)

where the integral is defined by

I =
∫ ∞

0
dxx

(1 + x)(1 + 3x/2)
[x0 + x(1 + x)2]2

. (B.2)

Now transform the variable from x to u,

u =
x

1 + x
; 0 ≤ u ≤ 1 .

The result of this is to give an integral in u:

I =
∫ 1

0

duu(1 − u)(1 + u/2)
[x0(1 − u)3 + u]2

. (B.3)

While this integral can in principle exactly be performed,
it is instructive to obtain an approximate analytical ex-
pression which in practice is sufficiently accurate, so as to
lend itself to a generalization to finite temperatures (see
below). The trick lies in the observation that most of the
contributions arise from the region of small values of u.
Then (B.3) simplifies to

I ≈
∫ 1

0

duu(1 − u/2)
[x0(1 − 3u) + u]2

.

Now integration by parts gives the final result,

I =
1/2

(1 − 3x0)2
ln (1 − 2x0)/x0 − 1/2

(1 − 2x0)(1 − 3x0)
.

(B.4)
Unlike the case of 〈qq̄〉, this result is valid for all allowed x0.
For purposes of determining the temperature dependence of
f2

π , to be discussed in Sect. 4, we record, as in Appendix A,
the corresponding results for small x0. This gives

I ≈ 1/2 ln 1/x0 − 1/2 .

Substitution in (B.1) leads to

f2
π ≈ Σ2

0Nc

8π2(1 − 3x0)2

[
ln 1/x0 − 1 − 3x0

1 − 2x0

]
, (B.5)

which lends itself immediately to a finite T treatment in
the vicinity of the critical point Tc (see Sect. 4).
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